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I N T E R A C T I O N  OF S T E A D Y  S H E A R  F L O W S  

OF A B A R O T R O P I C  L I Q U I D  

B.  N .  E l e m e s o v a  UDC 532.593,517.958, 533.6.011 

A mathematical model describing plane-parallel vortex flows of a barotropic liquid with a free 
boundary in a long-wave approximation is considered. For a particular class of solutions, the 
solvability of the problem of decay of an initial discontinuity of small amplitude is demonstrated 
and an algorithm of solution is proposed. 

The conditions of hyperbolicity of the system of equations for long waves propagating in a barotropic 
liquid layer are obtained by Teshukov [1]. A mathematical  model for a hydraulic jump on a shear flow of 
a barotropic liquid is studied by Teshukov [2]. The properties of the simple waves corresponding to the 
characteristic velocities of a discrete spectrum are examined by Teshukov [3] and Elemesova [4]. In [5], a 
solution of the problem of decay of an arbitrary discontinuity for the system of equations of long waves 
propagating in an eddying incompressible liquid is proved to exist and an algorithm of determining the wave 
configurations that arise is proposed. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  We consider the initial boundary-value problem 

u t+uuz  + v u y + p - l p z  = 0 ,  p - l p y = _ g ,  pt't-upz +vpy"kp(uz-l-Vy)=O, u(x,y ,O)=Uo(x,y) ,  

p=p(p), d > 0 ,  t O, (1.t) 

y = 0 :  v(x,O,t)=O, y = h ( x , t ) :  h t + u ( z , h ( z , t ) , t ) h ~ = v ( z , h ( z , t ) , t ) ,  

which describes vortex flow of a barotropic liquid with a free boundary in a shallow-water approximation. 
Here p is the density, u and v are the velocity-vector components, h is the free-surface equation, and p is the 
pressure. Integrating the second equation of (1.1), which describes the hydrostatic pressure distribution with 
depth 

py = -p(p)g [p(x, h(x, t), t) = P0], 

and the continuity equation, we obtain the relation [1] 

p = f(g(h - y)), p = f'(g(h - y)), 
Y 

v = _ ; - 1 / ( p ,  + 
0 

(1.2) 

where the function f is obtained by inversion of the relation g(h - y) = [ p(s)-~ds. If the functions u, h(x, t) 
Po 

are known, the quantities v, p, and p are found from (1.2). 
The conditions of hyperbolicity for system (1.1) were studied in [1], where it is shown that system (1.1) 

has discrete and continuous spectra of characteristic velocities. The characteristic directions of the discrete 
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spectrum dx /d t  = ki are given by the following equation in the variables x, y, and t: 

h(~,t) 

F(ki )  = R - g [ (u(x ,  y, t) - k i ) -2 f ' ( g (h (x ,  t) - y)) dy = 0 [R = p(r/), r / = f(gh)]. (1.3) 
0 

For any x and t, Eq. (1.3) has only two substantial roots such that kl < minu and k2 > maxu.  The continuous 
spectrum occupies the entire range of the function u for fixed x and t. 

In (1.1), from the independent variables x, y, and t, we convert to the new independent variables x, p, 
and t. The new unknown quantities are u, r = pt + upz + vpy~, y, and q. [The function p = 7/(x, t) specifies the 
pressure distribution at the bot tom.]  The unknown boundary y = h(x, t) in the variables z and p becomes 
known (p = po), and the boundary  conditions takes the form 

r = 0  for p = p o .  (1.4) 

The known boundary y = 0 in the new variables becomes unknown, and at p = r/(x, t), the following relation 
should hold: 

n, + u ( x , ~ , t ) , ~  = T ( x , , , t ) .  (i..5) 

System (1.1) in the new variables becomes 

u t + u u ~ : + v u p + R ( r / ) - l r l z  = 0 ,  Ux+Tp = 0 ,  P0 <~P~<r/(x,t), - - ~  ~<X ~< +co,  t~>0. (1.6) 

If the flow is vortex-free, then up ---- 0 and system (1.6) reduces to an analog in one-dimensional gas dynamics 
[1] [in the long-wave approximation, the vorticity w is equal to - u y  in the variables (x, p) - -  pgup]. 

Differentiating the first equat ion of (1.6) with respect to p and taking into account the second equation, 
we obtain the relation 

(up), + u(up)~ + , (up)p = 0, 

whence it follows that (1.6) admits a particular class of solutions with constant or piecewise-constant quanti ty 
up. We consider flow with constant up = f~ = const. Integrating this relation with respect to p from p0 to rl, we 
have 77 = p0 + (u2 - ul)/f~, where ul = u(x,  po, t) and u2 = u(x,  7, t). The horizontal and vertical components 
of the velocity vector are equal to u = ~(p  - p0) + ul,  r = - u l x ( p  - po), respectively. For the functions 'ul 
and u2, from (1.6), we obtain the sys tem 

ult + UlUlz "4- (u2 -- ul)z(RFt)  -1 = 0, u2t + u2u2z A- (u2 - Ul)z(Rf't) -1 = 0. (1.7) 

The secular equation of system (1.7) has two roots 

kl,2 = (u2 + Ul T ~/(u2 - Ul) 2 + 4(u2 - u l )R- '~ t  - 1 ) / 2 ,  (1.8) 

and the relations for the characteristics are converted to the Riemann invariants 

(~2-~l)/f~ 

rit q- kiriz  = 0 ,  r l , 2  = U l  - -  ds. (1.9) 
0 n ( s  + p 0 ) ( m  + ~ / a ~  + 4 ~ / ( n ( ~  + p0)) ) 

We consider a two-layer flow in which the layer p0 ~ p <~ 77 is divided by the contact surface p = 6 into 
two sublayers, in each of which the value of up is constant: 

{ f~0, po <<. p <~ 5(z , t ) ,  
U p  = 

a ,  ~(z, t) ~< p ~ , (~,  t). 

At the interface p = 5, the velocity vector (u, r) is considered continuous. The horizontal velocity component 
has the form u = f~0(p-  p0) + u l ( x , t )  at p0 ~< p ~ 6(x, t) and u = u2(x , t )  - f~(T] - p) at 5 ~< p ~< r 1. The 
horizontal velocity component at the interface p = 6(x, t) is designated by u0 = f~0 ( 6 -  p0) +u~ = u2 - Ft(r/- (5). 
The thicknesses of the lower and upper  layers are related to u0, ul, and u2 by 

- p0 = (u0 - =~)/f~0, ~ - 6 = (u2 - u 0 ) / a .  (1.10) 
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From system (1.6) it follows that  the vector U = (u2, ul ,  u0) • (the superscript • denotes transposit ion) should 
satisfy the equations 

Ut+ AU~=O, A= 

U2 + ( R ~ )  -1  - ( R ~ 0 )  -1  

(.R~"~) -1  u 1 - ( R a 0 )  -1  

(Ra)-' -(Rao)-' 

R-l(1/f~o - 1/f~) -1 

R-l (1/f}o - 1/f~) -1 

uo -b R-l(1/f~o - 1/f~) -1 

(1.11) 

The vertical velocity components  in the lower and upper  layers are given by the formulas r = - ( p - p o ) u l ~ ( x .  r 
and r = (5 - p)(u2~ - ftrjz) - Ul~(~ - p0), respectively. 

In s tudying the wave processes in two-layer flow, it is necessary to know the velocities of propagation of 
the characteristics. The secular equation for system (1.11) can be obtained using the general rule of determining 
characteristics or the secular equation for the general case (1.3): 

1 1 1 ( 1  ~__) 
F ( k i )  = R + f~(u~ - ki)  ~0(Ul  -- ki) + uo--- ki f~0 = 0. (1.12) 

Determination of the roots ki of Eq. (1.12) reduces to searching for roots of the third-degree polynomial.  It 
is known that  the first root kl < minui  and the second root k2 > max ui. Depending on Ft and Ft0, there are 
eight cases of the relative position of ui and the third root k3: 

1) 0 < g t < f t 0 ,  ul < k 3 < u 0 < u 2 ;  

2) ~ > ~'~0 > 0, Ul < u0 < k3 < u2; 

3) 0 > g t > f ~ o ,  u 2 < u o < k 3  < u l ;  

4) g t < f ~ o < 0 ,  u 2 < k 3 < u o  < u l ;  

5) 0 ( ~ ,  ~"~0 ( 0, Ul ( k3 ( U 2 ( U0; 

6) 0 < Ft, f~0 < 0, u2 < k3 < Ul < uo; 

7) f ~ < 0 ,  f l 0 > 0 ,  u 0 < u x < k 3 < u 2 ;  

8) f ~ < 0 ,  f l 0 > 0 ,  u 0 < u 2 < k 3 < u l .  

(1.13) 

From (1.13) it follows that  the root k3 falls in the velocity ranges in the upper layer or the lower 
layer. Since flows with constant Up form a particular class of solutions of system (1.6), which has a continuous 
spectrum of characteristic vclocities occupying the entire range of the velocity u at fixed x and t, the root k~ 
is a nonisolated eigenvalue. 

We verify the condition of strong nonlinearity for the sets of characteristics d x / d t  = ki (i = 1, 2, 
and 3). We recall that  a set of characteristics is called strongly linear if V k i  �9 lri ~ 0, where lri is the right 
eigenvector of the matrix A that  corresponds to the eigenvalue ki; V = (O/Ou2, O/OUl,  O/Ouo) .  It is easy to 
verify that  lri = ((u2 - ki) -1, (ul - k/) -1, (u0 - ki) -1 )  is the right eigenvector of the matrix A. Using Eq. 
(1.12), we obtain 

V k i  . lri = K~-l Li ,  Li = R'  R + ft(u2 - ki) s ft0(Ul - ki) s + (u0 - ki) 3 ~o ' 

1 1 1 ( 1  ~ )  
K i  - f~(u2 - ki) 2 f~0(Ul - ki) 2 + (uo - ki) 2 flo " 

Since all roots of Eq. (1.12) are different, Ki  = F~(ki )  # 0 and the sign of the function Li determines whether 
the set of characteristics d z / d t  = ki is strongly linear or not. We examine the sign of Li for each set of 
characteristics. If the function R = R(rl) satisfies the condition [2] 

3 R  - (r 1 - po)R '  > 0, (1.14) 

the functions L1 and L2 have a fixed sign. Indeed, for the roots kl and k2 of Eqs. (1.12), the quantities ui - kl 
and ui - k2 are positive or negative, and, hence, ( U l  - -  k i ) ( u o  - -  ki) > 0 and (u0 - k i ) ( u 2  - ki) > 0. In addition, 

849 



Left flow 
f~=o)  I 

p = q(x,t) 

P =P0 I 
x~(t) 

Fig. 1 

Rigth flow 

x2(t) 

(uo - u l ) / f lo  > 0 and (u2 - uo)/f~ > 0. Using the  inequali ty a 2 + b 2 >~ 2ab, we obtain  

3(u2 - uo) 3(ul - u0) (i = 1, 2). (1.15) 
Li ~ R R '  - ~(u2 - ki)2(uo - -  ki) 2 -- ~'~0(Ul -- ki)2(uo - ki) 2 

From Eq. (1.12) and the  Cauchy-Bunyakovsk i i  inequal i ty it follows tha t  

(U2 - - U0  U0 -- ?-tl'~ 1/2 ( U2 -- ~Z0 U0__Ul )1/2 
R ~ ~ + ~0 ',] ~(U2 -- ]r -- ]r + ~0(U0 --'~/~("UI -- ]r (i  = 1, 2). 

From the last inequali ty,  (1.10), and (1.15) we obta in  

<_. R R '  - a n : ( ,  - p 0 ) - '  = - - v 0 ) R '  - 3 R )  < 0 ( i  = 1, 2 ) .  

Let us consider  the  function La. We denote  a = f~0/fl. Let condi t ion  (1.14) and the following condition 
[5] be satisfied: 

1/2 < a < 2. (1.16) 

We show that ,  in this case, the  set of characteris t ics  tha t  corresponds to the  root  k3 also satisfies the condition 
of strong nonlinearity. Using (1.14), we find that  the  function L3 satisfies the  inequali ty L3 ~ R 3 ~ ( 0 1  + ~/'2), 
where ~bl = 3 ( a / z 2 -  1 / z l  + ( 1 -  a) /zo)  -1,  ~b2 = a z ~ -  zal + ( 1 -  a)z0 a, and zi = ( R ~ o ( u i -  k3)) -1,  where i = 0. 
l, and 2. The variables zi are related by the  secular equat ion X = 1 + az2 - Zl + (1 - a)z0 = 0. Each case of 
variation of the pa rame te r s  u / a n d  k3 (1.13) corresponds to a part icular  range of the variables zi. For example,  
case 1 corresponds to the  range zl < 0, z0 > z2 > 0, a > 1, and case 2 to the  range z2 > 0, z0 < Zl < 0, 
0 < a < 1. The  funct ion  r = r + r is tes ted  for a conditional e x t r e m u m  subjec t  to the condit ion X = 0 in 
each of the ranges of the  variables zi. Next ,  the behavior  of the funct ion r is examined at the  boundar ies  of 
the ranges. As a result ,  it is shown that  r is a negat ive function only in cases 1-4 with c~ satisfying condition 
(1.16). Below, we assume tha t  conditions (1.14) and (1.16) are satisfied. 

2. E x i s t e n c e  o f  a W a v e  of  F l o w  I n t e r a c t i o n .  We note tha t  s y s t e m  (1.6) admits  a solution of the 
form u = u(p), r = 0, and q = 770 = const,  which in the initial variables x, y, and t describes a s teady shear 
flow: u = u(y),  v = 0, and h = h0 = const. 

We consider the  auxil iary problem of the  interaction of two s t eady  shear flows character ized by the 
constant  quant i ty  Up = l~. Let,  at x < x l ( t )  and x > x2(t),  the flow be a shear  flow (Fig. 1); fl = w] for the 
left flow [z < xl( t ) ]  and ~ / =  w2 for the right flow [z > x2(t)]. At x1(t) < x < x2(t),  on the left of the contact 
surface p = 5(x, t) there  is the  flow region with constant  Up = Wl, and on the right of it there  is the flow 
region with constant  up = w2. It is assumed tha t  at the boundar ies  x = Xl(t)  and x = x2(t) the conditions 
of continuous joining to shear flows are satisfied, and at the interface be tween  the liquids p = 6(x , t ) ,  the 
continuity condit ion for the  velocity (u, r )  and the  condit ion ~it + u$,  = r are satisfied. 

We show tha t  wi th  certain l imitations on the  shear-flow velocity and  satisfaction of inequalit ies (1.14) 
and (1.16) there  is a s imple wave - -  a wave of flow interaction - -  tha t  satisfies the  condit ions listed above. 

Since up is a piecewise-constant  funct ion at x l ( t )  <~ x <~ x2(t),  this region flow is descr ibed by system 
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(1.11). From (1.10) it follows that  as 5 ~ po, the velocity at the  interface uo tends to the veloci ty  ul (p = po), 
and as 5 ~ r/, we have uo ~ u2 (p = q), From the secular equat ion  it follows that  uo ~ k3 as uo --* Ul (5 --, po) 
and as uo --* u2 (5 ~ q). Hence, the boundar ies  of the interact ion region move with character is t ic  velocity 
k = k3, and the flow region Xl ~< x ~< x2 should be descr ibed using the simple wave tha t  corresponds  to the 
root  k3 of Eqs. (1.12). From (1.11) we obta in  the  following equat ions for the simple wave ui = u i ( k ( x , t ) ) ,  

k = k3: 
(U 1 -- ~:)tt' 1 : -z]tn(,]) -1,  (u 2 - It)u; = _r ] tR(r ] ) - l ,  (u 0 _ k)tt 0t = _7] tn(r ] ) - i  (_.1)') 

The  equation for r](k) is obtained by differentiat ing (1.12) with respect to k: 

r l ' /R(y  ) = - K 3 ( L 3 )  -1.  (2.2) 

For system (2.1), (2.2), the secular equat ion  (1.12) is an integral by construction. 
We clarify the  quali tat ive behavior  of the s imple-wave parameters.  The  der ivat ive  r / (k)  has no 

singularities since the  strong nonlineari ty condition is satisfied. The  function L3 is a lways negative, and 
the function K3 is wri t ten  as 

F ' ( ] r  _-- - ( k  3 - ]~1)(~:3 - ~ :2)[ ( t t  2 - ~ 3 ) ( t t  1 - ]c3)(t t  0 - ~:3)] - 1 .  

relative posit ion of ui and k3 (1.13), the derivatives u} and q' have fixed sign: 

K 3  --- 

H e n c e ,  in cases 1-4 of the 

1) r f < 0 ,  

2) r / > 0 ,  

3) r / > 0 ,  

4) r / < 0 ,  

= i > 0 ,  ~ > 0 ,  ~ < 0  

ul < 0 ,  ~ > 0 ,  ~i > 0  

4 > 0 ,  = ~ > 0 ,  ~ i < 0  
I u ~ < 0 ,  ~ > 0 ,  u l > 0  

(gt0 = ":2 > ft = ~1 > 0); 

(0 < ft0 = ~ < a = ~ol); 

(9t0 = .:1 < fl = ~2 < 0); 

(0  > ~-~0 = O91 > ~ = ~ 2 ) -  

For definiteness,  we consider case 1. In this case, the  thickness of the lower layer 5 increases with 

increase in k [5' = (U~o -'u~1)/~2 > 0] and k varies in the  range u~ l) <<. k <<. u~ T). Below, the  superscript  l 
corresponds to the flow at the lcft [x < xl( t ) ] ,  and the superscr ipt  r to the flow on the right [x > x2(t)]. 

Let us prove the existence of the simple wave of flow interaction by obtaining a pr ior i  es t imates  of the 

solution. 
L e m m a .  Let Ul, u2, uo, and 77 be a solution o f  sys tem (2.1), (2.2). Then, the fol lowing estimates hold: 

(2.3) 

C O l ( ~ - p o ) < ~ ] u l - k l ~ w 2 ( 5 - p o ) ,  col(r] - 5) ,.< ]u2 - k] -..< ~l(r] - 5) + ~. 

P r o o f .  In case 1 of (1.13), the  inequalities 

0 < u 0 - k < u 2 - k ,  

are valid. Then,  f rom the equali ty 

0.22 > ~dl ,  t t l  - -  ]~ ( 0 ( 2 . 4 )  

u2 - k = u2 - u0 + u0 - k 

it follows that  

u2 - k >1 u2 - uo. 

From the equal i ty  u0 - Ul = u0 - k + k - u l ,  we obtain  the  upper  bound 

lui - k] .< u0 - u l .  

From the secular  Eq (1.12) it follows that  

U2 - -  u0  u 0  - -  U l  
< 0 .  

(2.5) 

(2.6) 

(2.7) 
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Hence, by virtue of (2.4), (2.6), we have 

ta"l (Uo -- Ul)  W,~2 ' (72  0 (2.8) 
1 7 2 1  - -  ] r  > (U2 - -  ]q) > - -  ?2,). 

~ 2 ( ~ 2  - ?20) 

Since (u0 - Ul)(W2(uo - k)(u,  - k)) -1 < 0, from (1.12) we obtain R - (u2 - 72o)(031(uo - k ) (u2  - k ) )  -1 < O. 
The last inequality and (2.4) yield the upper  bound 

(?20 -- k) 2 ~< (?20 - k)(t t2 - k) <~ (it 2 - t to)(etx~l) -1 .  (2.9) 

By virtue of (2.6) and (2.8), from (1.12) we obtain 

1 ( 1  1 ) = R +  1 1 1 1 
4 0 - k  ~ ~(722 k) ~2(72~ k) ~<R+ + ), _ _  _ _  ~1(7t2 - -  ZtO) 021(720 - -  U 1 

whence, we have the lower bound 

032 -- 031 (?22 -- UO)(?20 -- 41)  
- . ( 2 . 1 0 )  

40 k/> 032 / ~ l ( ? 2 2 - ~ 0 ) ( ? 2 0 - u l ) + ? 2 2 - u l  

From (2.5) and (2.9), we obtain the upper  bound 

?22 - k ~< u2 - ?2o + ~(u2 ' u0) / (Rwl) .  (2.11) 

The s ta tement  of the lemma follows from (1.10) and inequalities (2.6)-(2.11). The  lemma is proved. 
From the a pr ior i  estimates (2.3) it follows that  in any interval 5 E [cr, A] (p0 < ~r ~< 5 ~ A < q), the 

quantities 172i - kl remain bounded: M1 (a, A, p0, q) < l u i -  kl < M2(a, A, p0, r/). The  quanti ty ul - k vanishes 
only at 5 = p0 (the boundary point k = u , ) ,  and the quanti ty u2 - k vanishes only at 5 = q (the boundary 
point k = u2). The  quanti ty u0 = k can vanish only at the boundary points 5 = q and 5 = p0- 

We consider the behavior of solution (2.1) at the boundary points. As k --~ 41,721 ~ u0, and 6 ~ p0 
from (1.12) we obtain lim [(u0 - k ) / ( u l  - k)] = 1 - a. From (2.2) it follows tha t  in the neighborhood of the 

k~u 1 
point k = u~ 0, the function q ' / R  is wri t ten as 

r/ u0 - k 
R 2 - a  

The limits in the neighborhood of the point k = 72~) 

?20 - k 
lim - ( a -  l ) a  -1 ,  

k- .~  U2 - k 

- -  + o ( ( ~ 0  - k)2) .  

are found in the same manner :  

77' uo - k 
R - 2a  - 1 + O( (uo  - k)2). 

Thus, the derivatives of ui have finite limits at the boundary points k = ul z) and k = u~T): 

, ,  (0, (2 a) -1 4 ( @ )  = (1 - ,~)(2 - ~ ) - ' ,  6 ( @ )  = o, 4 0 t u ,  ) = - , (2.12) 
u',(?2~ T)) = o, 72;(72~r)) = ( ~  _ 1 ) ( 2 ~  - 1) - 1 ,  u ~ , ( ~ r ) )  = ~ ( 2 ~  - 1 ) - '  

Considering the left flow known, we determine the right flow, which can be related to the specified flow 
by a simple wave of interaction. The condition of joining to the left flow (5 = p0) is 

uo=?2~ `), U l = U ~  t), u 2 = u ~  t) for k = u ~  ,). (2. I3) 

From (2.12) it follows that  the Cauchy problem (2.1); (2.2), (2.13) has a single solution in the neighborhood 

of the boundary point k = u~ 0. The possibility of continuation of the solution follows from the a priori  
estimates [by virtue of (2.3), we obtain a uniform estimate for the right sides of system (2.1), (2.2)]. Since 
in the interaction wave, the thickness of the lower layer 5 increases with increase in k, the solution continues 
to the point 5 = r/ [k = k, and u 2 ( k , )  = k,]. The value of k, is de termined in the course of solution of the 
problem. Then,  the state that  can be related to the left state by a simple interaction wave is given by the 
relations 

4~ r) ----- 721(]r 4(/)'?2(/)'1 2 ] = W'(" /tt(l), ,?'t2(l)']' tt~r) = ]r l)) = ~2(U~I),u~I)) .  (2.14) 
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Thus, a simple wave of flow interact ion is proved to exist, and necessary conditions for the existence of this 
wave are obtained. 

3. P r o b l e m  of  D i s c o n t i n u i t y  Decay .  We consider the problem of decay of an initial discontinuity 
for system (1.1): 

{ (ul(v),  h l) at x < 0, 
(u, h) ,=0 = (ur(y), hr) at .~ > 0. (3.1) 

The initial da ta  (3.1) describe steady shear flows on the left and right of the boundary of the discontinuity 
(x = 0). Here ul(y) and ur(y) are known functions and h I and h r are specified constants. 

In the variables x and p, the initial data  of the problem of decay of an arbitrary discontinuity (3.1) 
have the form 

( u I ( P ) ,  r / l )  f o r  x < O, 

(~'r/) ~=0 = ( ~ ( p ) ,  r/2) for �9 > o. (3.2) 

Next, we consider the initial data  (3.2) with constant utp = w] and u~ = w2. These conditions simplify 
the problem and they follow from the property that  the quantities w/(pg)  = Up are conserved with passage 
through the fronts of smal l -ampli tude discontinuities and regions of simple waves [2, 4]. 

Since the equations, the initial data, and the boundary conditions are invariant with respect to uniform 
extension of the variables x and t, we seek a solution of the problem of decay of an arbitrary discontinuity 
(1.8) in the class of self-similar solutions u = u ( x / t ,  p), ~? = rl(x/ t ,p) ,  and r = t - l r ( x / t , p ) .  

For the single-layer flow region, the equations of motion (1.7) are wri t ten as 

(77 - po)t + (uc(r/ - po))z = O, ((7 - po)uc)t + (u2(r / -  p0))~ + ( P ( r / -  p0))~ = 0, (3.3) 

7/--p o 

uc = (u~ + u l ) / 2  and P(r/ - po) = j sR(po + s) - l  ds +w2(~ 7 - po)3/12. For Eqs. (3.3), w h e r e  the initial 
0 

data  of the problem of discontinuity decay have the form 

f (ucl, rh) for x < 0 ,  
(3.4) 

(~c, r/) t:0 (uc2, r/:) for x > 0 

(ud  and r/i are specified constants) .  
System (3.3) is an analog of one-dimensional gas-dynamic equations. The  relation P ( r / -  p0) describes 

the equation of state. It is known [6] that  the properties of solutions of gas-dynamic equations depend on 
the properties of the function ~y(V) -- P ( V )  (V  is the specific volume). If r < 0 and ~Yvv > 0, centered 
waves that  arise upon decay of initial discontinuities are always rarefaction waves and the discontinuities are 
compression shock waves (in our formulation of the problem, they are hydraulic jumps of level rise). In this 
case, a right wave and a left wave always form. For the equation of state P ( r / -  p0), the condition ~2v < 0 is 
always satisfied and the convexity condition is satisfied by virtue of condition (1.14). 

Following the algori thm of solving the gas-dynamic problem of discontinuity decay, we define a set of 
states (uc, 7/) that  can be related to the initial state (uc0, 70) by a simple wave or a strong discontinuity. The 
discontinuity relations for (3.3) have the form 

[(77 - po)(u~ - D)] = 0, [(rl - po)u~(uc - D) + P] = 0, (3.5) 

where [f] = f +  - f -  is the j u m p  of the function on the discontinuity x~(t) = D. Let ur and ~/0 be the flow 
parameters before the jump.  Then,  from (3.5) we find Uc and 7/behind the front: 

u r  UcO = : t = r  P0)((r/0 - p0) 51 - ( z / -  p0) -1) (3.6) 

(the plus or minus is selected for the right or left wave, respectively). 
The states that  can be related to (uc0, 7/o) by a simple wave are defined by the relations 

r 2  = r20  = const, r l  = r i 0  = const.  (3.7) 
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The first relation specifies a left simple rarefaction wave (the speed of propagation of the wave is k = kl < 
minui) ,  and the second relation defines a right wave (k = k2 > maxui).  We convert (3.7) to the relations 
b e t w e e n ,  - p0 and uc. Using (1.9) and the equalities ul  = ur - wi(7 - p0)/2 and u2 = uc + wi(7 - p0)/2, we 
write (3.7) in the form 

{ r  - p0)  - r  - p 0 )  + "~,(7 - 7 0 ) / 2 ,  r~ = r~0 ,  
(3.8) 

Uc - UcO = r - p0) - ~2(70 - P0) + wi(7 - 77o)/2, r2 = r20, 

~--Po / .  2 
O i =  J ds, i = l ,  2. 

0 R(s + p0)(~is + ~ / ~ 2  + 4~/(R(~ + p0))) 

The right sides of (3.6) and (3.8) are monotonic functions that  vanish for 7 = ,0- 
For specified values (uca, ,1 ) ,  which will be called the left initial state, the solution for the wave 

(rarefaction or shock), u! 0 = ucl + Ut(71 ,7  (0) is a function of one variable , (0 .  The function U t is given 
by the second relation of (3.8) for 7 (0 < 71 and by formula (3.6) with the minus sign for 7 (0 > ~?a. For the 
state (uc2, ~72), which will be called the right state, the solution is defined as a function of the variable ~(rl: 

u! r) = uc2 + Ur(,1,7if))-  The function U r is given by the first relation of (3.8) for ,(r) < 772 and formula (3.6) 
with the plus sign for 7 (r) > ,2- In contrast to the gas-dynamic problem, the states behind the t ransmit ted 
waves must satisfy conditions (2.14) rather than the condition of coincidence of velocities and pressure. We 
bring (2.14) to the form 

u!r) = (~(u~0 ~,)) + ~2(~,)u~0)) /2 = vl(~!'), 7(')), (3.9) 

where u (') = (u~ r) +u~')) /2,  , ( ' )  -P0  = ( u ~ ' ) - u ~ ' ) ) / ~ 2 ,  u~ t) = u (l) + w , ( T C l ) - p o ) / 2 ,  and u~l)= u ! / ) - ~ , ( ,  (0 - 

p0)/2. 
Solution of the problem of decay of an initial discontinuity (3.3) and (3.4) reduces to solution of the 

following system of four equations for the four unknowns u!  t), rl(O, u~ r), and ,(r): 

~ - u~O - ~ 1  - U ~ ( 7 ~ ,  , { 0 )  = o ,  ~ 2  - u !  r) - =~2 - U ~ ( . 2 ,  . ( ~ ) )  = o ,  
(3.10) 

~3 =-'~ u!r) -- Ul( t t~l) ,7( l ) )  =-- O , r  _~ r](r) -- g2 (u~ l ) , , ( l ) )  = 0. 

If the left and right shear flows coincide, i.e., ucl = uc2, ,1 -- 72, ~ ---- ~2, then a = 1 and the 
interaction wave degenerates into a shear flow: 

U ~-- '~I(P--P0)+U~ l), 7 ----"1, ttl ---- tt~ l), U2 --~ tt~ I), ~ = U0 = it0 0 (U~ I) ~ k ~ u~l)). (3.11) 

Condition (2.14) becomes the condition of coincidence of the left and right shear flows: u! ~) = u~ t) and 
.q(r) = 7(0, and system (3.10) is compatible. 

Let the left and right states be close. Then, w2 = (1 +r and (~ = 1 + G  where c is a small parameter  
(e > 0). We consider small perturbations of the shear flow (3.11): 

7 = , 1  + = ') + = + = ~ + = + k = k ~ + 

We linearize system (2,1), retaining only terms that are linear in r and refer all perturbations to the 
unperturbed level k = u ~ = k ~ We obtain the system 

(Ul)t ~---(71)fRO1 (l t~l)-  ~)-1'  ( t t ~ ) t : - ( " l ) t R o l ( l t ~ l ) - k ) - l '  ltl -- - ( ' l ) ' n ~  (3.12) 

R0 = RQ/1) = const, k = u0 ~ 

Linearizing (1.9) with allowance for 71 = (u~ 0 - u~l))Wl 1, we have 

7'  = (u~ - u l ) w ~  1 + (u~ t) - k ) w [  1. (3.13) 
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q -Po 

U c 

Fig. 2 

The quantity k I is obtained from the linearized secular equation(1.12): 

k 1 = u 1 __ (R0o.,,1 + ( u ~  l) _ k )  - 1  _ ( u~  l) _ k ) - l )  - 1 .  

Using (3.13) and eliminating r/1 from the first two equations (3.12), we obtain 

= z)- k)l(Ro ,) 
_ k)(u 0 _ k ) -  (u 0 _ 

= - 
k)(u O_ 

Since conditions (2.14) should be satisfied, we have u](u~ O) 1, (0, = u2Lu 1 ) = O. Integrating (3.14), we find the 
following solution of the linearized problem: 

u I = ( I i ( k ) - / l ( t t~ l ) ) ) (Roo21  A) -1, tz 1 = ( I2 (k ) - /2 ( t t~ I ) ) ) (R0WlA) - I , .  

llere 11 (k) = in (k2 - k)U~')-k2 ( k -  kl ) kx-u~0 and I2 (k )  = In (k2 - k)U~ t)-k2 ( k -  kl ) k'-u~') , A is the discriminant, 

and k, and k2 are roots of the quadratic equation (u~ l) - k) (u~ t) - k)  - (u~ z) - u l O ) l ( R o w l )  = 0 (k2 > kl). 
Then, the Jacobian of system (3.10) for ur = uc2, r/1 = r/2, and wl = w2 is not equal to zero, and according 
to the implicit function theorem, in the neighborhood of (uc , ,  ql) there is a unique solution of system (3.10). 

We describe an algorithm of constructing a solution of the problem of decay of an arbitrary 
discontinuity. We construct plots of F1 and F2 of the possible transitions for the left and right initial states, 
indicated by points 1 and 2, respectively, in the plane (uc, r] - p 0 )  (Fig. 2). The curve F1 is given by the 
function uc = u~1 + U(O, and the curve F2 is given by the function ur = uc2 + Uff). The states behind the 
transmitted wave fronts must be related by the existence conditions for an interaction wave (2.14). To find 
the point that specifies the state behind the front, we plot the curve F' given by the parametric equations 
(3.9), where ucl and r/1 belong to the curve F1. The state behind the transmitted waves for initial state 2 is 
specified by the point of intersection 3' of the curves F2 and F', and the state behind the wave front for initial 
state 1 is specified by point 3 (preimage of point 3' on the curve F1). The wave configuration is determined by 
analogy with gas dynamics: if the point of intersection 3' (or 3) lies above the initial point 2 (or 1), a shock 
wave (hydraulic jump) propagates over the shear flow, and if it is below the initial point, a simple rarefaction 
wave propagates. The states behind the front are related by relation (2.14), and the solution of the problem 
of decay of an arbitrary discontinuity is completed by constructing the simple interaction wave. In contrast to 
[5], the existence conditions for a flow interaction wave (2.14) are not specified explicitly but are found from 
the solution of system (2.1), (2.2), which can be performed numerically. 

We plot the curve F'. We select several points (U~a r]i) on the curve Fx. The values u~ti), ~ (0 , ~2i are 

uniquely determined from (u~l , r/i) by formulas (3.9). Using u~ 0 and u~ 1) as Cauchy data, for each i, we obtain 
(~) 

a solution,~l, ([), u~  ) of system (2.1), (2.2). The point set (u~), 7/! ~)) specifies the curve F' [the values of uci 
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Uc 

and q!r) are obtained from (3.9)]. Figure 2 gives plots of F1, F2, F' for the left state ul = 1, uz = 2, and r = 2 
and the right state ul = 2, u2 = 5, and w2 = 3 [the polytropic equation of state R(q) = rll/3]. The differential 
equations (2.1) and (2.2) are approximated by an explicit difference scheme [7]. In the neighborhood of the 
point k = Ul = 1, the solution is determined from (2.11) and is then found by the second-order Runge-Kutta  
method [7]. In this case, simple rarefaction waves propagate over the shear flows. Figure 3 gives the pattern 
of characteristics in the plane (x, t) that corresponds to the wave configuration in Fig. 2. When the position 
of states 1 and 2 changes, the  position of the curve F ~ and, hence, the wave configurations change. 

Figure 4 shows the curves of F1, F2, and F ~ for the left state uz = 1, u2 = 7, and wl = 2 and the right 
state Ul = 2, u2 = 5, and w2 = 3 [the equation of state R(rl) = r]l/3]. As follows from Fig. 4, a rarefaction 
wave propagates over state 1 and a hydraulic j ump  propagates over state 2. The pattern of characteristics 
corresponding to this wave configuration is given in Fig. 5. 

Thus, let the left state 1 (Ucl, ~1) and the  right state 2 (uc2, 7/2) be specified. The curves F1 and F2 of 
the possible transitions for states 1 and 2, respectively are plotted in the plane ( q -  p0, uc) (see Fig. 2). Then, 

the curve F t is plotted by the curve F1. Point 3 ~ with the coordinates (u~ r), 77 (r)) of intersection of the curves 

F r and F2 specifies the state behind front that  corresponds to state 2, and point 3 with the coordinates (u~ l), 
q(1)) (we-image of point 3 r on the curve F1) specifies the state behind front that corresponds to state 1. If 
point 3 ~ is above point 2 on the curve P2, a hydraulic jump propagates over the shear flow; if point 3 ~ is below 
point 2, a simple wave of decreasing level propagates. Similarly, for condition 1: if point 3 lies above point [ 
on the curve F1, a hydraulic jump propagates, and if it is lower, a simple wave of decreasing level propagates. 
For the wave configuration shown in Fig. 2, a simple wave with characteristic velocity k2 > max u propagates 
over the right flow [k2 = k2(uc2,772) is determined from formula (1.8) with the plus sign]. A simple wave with 
velocity k] < m i n u  propagates over the left flow (kl is determined from (1.8) with the minus sign). In the 
regions - c o  < z / t  < kl(Ucl,rll) and k2(Uc2, rl2) < x / t  < q - ~  (see Fig. 3), the flow is a shear flow: Uc = ucl, 
T/= 771 and uc = uc2, 77 = r/2, respectively. In the  simple-wave region adjacent to state 1, the solution is given 

by the formulas x / t  = kl(uc, rl) and r2 = r2(ucl,rll), where kl(ucl,rll) <~ kl <~ k1(u!l),71(t)). In the simple- 
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wave region adjacent  to state 2, the solution is given by the formulas x/ t  = k2(uc,/]), and r l  = rl(uc2,/]2), 
where k2(uc2,/]2) <, k2 <~ k',(u!r),/](r)). In Fig. 3, the flow in the regions kl(u(t),/](t)) < x / t  < u~ t) and 

u~ r) < x / t  < k2(u~r),/] if)) is a shear flow. The state corresponding to points 3 and 3' obeys conditions 
(2.14), i.e., among all possible states, we found two states that  can be related by a simple interaction wave. 

Construction of the simple wave in the region u~ t) < x/ t  < u~ ~) completes the solution of the problem. 
For the wave configuration shown in Fig. 4, the solution is constructed in the same manner. The velocity 

of the hydraulic j u m p  D is obtained from the states ahead of and behind the discontinuity front using the first 

relation of (3.5). In our case, D = ((r/if) - po)u! ~) - (/]2 - p0)uc2)(/] (r) - / ]2)  -1. We analyze the discontinuity 

relations. From (3.5) it follows that  u~ ~) < D, where u (T) is the mean velocity behind the discontinuity front. 

However, the max imum velocity u~ r) may not satisfy this condition (in the case considered, w2 > 0). Using 

relations (3.5) and (3.9), we write the condition u~ ~) = D in the form 

- p 0 ) =  1 2 ( ( ~ - l ) 2 ( 3 ~ 2 + 2 ~ + l ) ) - l / s R ( p o + s ) - l d s  ( ( = ( r / ( r ) - p 0 ) ( / ] 2 - p 0 ) - l ) .  (3.15) 022(/]2 
1 

As ~ --. l, the function on the right side of (3.15) tends to +ec  (the uncertainty 0/0 is uncovered by the 
L'Hospital rule), and as ~ ~ +oz,  it tends to zero. Therefore, there is always at least one root ~ = (. of Eq. 
(3.13). If co~(/]2 - p0) --* +co,  then ~. ~ 1 and if w2(/]2 - p0) ~ 0, then ( .  ---+ +ec .  Hence, the maximum 

velocity behind the front u~ ~) remains lower than the velocity of the discontinuity D if the quanti ty w22(/]2 - p 0 )  
is small. Therefore,  the configuration with hydraulic jumps  belongs to the case of small quantities ~](/] - p 0 ) .  
We note tha t  for a wave configuration with rarefaction waves there are no such limitations. 

If the curves F ~ and F2 are not intersected, decay gives rise to two centered simple rarefaction waves 
behind which the flow "depth" is equal to zero. 

Thus,  it is proved that  for small values of w2(/]i - po) and close states 1 and 2, the problem of decay 
of an arbitrary discontinuity has a unique solution. 
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Schools (Grant  No. 96-15-96283). 
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